При этом разброс вариант x_i вокруг среднего \bar{x} характеризуется величиной стандартного отклонения s. В количественном химическом анализе величина s часто рассматривается как оценка случайной ошибки, свойственной данному методу анализа. Квадрат этой величины s^2 называют дисперсией. Величина дисперсии может рассматриваться как мера воспроизводимости результатов, представленных в данной выборке. Вычисление величин (оценок) s и s^2 проводят по уравнениям (1.5) и (1.6). Иногда для этого предварительно определяют значения отклонений d_i и число степеней свободы (число независимых вариант) f:

$$d_i = x_i - \overline{x}, \tag{1.3}$$

$$f = n - 1, \tag{1.4}$$

$$s^{2} = \frac{\sum_{i=1}^{n} d_{i}^{2}}{f} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n \cdot \overline{x}^{2}}{f},$$

$$s = \sqrt{s^{2}}$$
(1.5)

Стандартное отклонение среднего результата $s_{\bar{s}}$ рассчитывают по уравнению:

$$s_{\bar{\delta}} = \frac{s}{\sqrt{n}} \qquad (1.7)$$

Отношение $s_{\bar{\delta}}$ к \bar{x} , выраженное в процентах, называют относительным стандартным отклонением среднего результата или коэффициентом вариации $s_{\bar{\delta}_{\bar{\delta}}}$ %.

Примечание 1.1. При наличии ряда из g выборок с порядковыми номерами k ($l \le k \le g$) расчет дисперсии s целесообразно проводить по формуле:

$$s^{2} = \frac{\sum_{k=1}^{k=g} \sum_{i=1}^{i=n_{k}} d_{ik}^{2}}{f} = \frac{\sum_{k=1}^{k=g} \left[(n_{k} - 1) s_{k}^{2} \right]}{f} = \frac{\sum_{k=1}^{k=g} \left(\sum_{i=1}^{i=n_{k}} x_{ik}^{2} - n_{k} x_{k}^{2} \right)}{f}.$$
 (1.8)

При этом число степеней свободы равно:

$$f = \sum_{k=1}^{k=g} (n_k - 1), \tag{1.9}$$

где x_k – среднее k-той выборки;

 n_k — число вариант в k-той выборке;

 x_{ik} — i-тая варианта k-той выборки;