достоверными, если ни одна из вариант выборки не отягощена грубой ошибкой, т. е. если выборка однородна. Проверка однородности выборок малого объема (n < 10) осуществляется без предварительного вычисления статистических характеристик, с этой целью после представления выборки в виде (1.1) для крайних вариант x_1 и x_n рассчитывают значения контрольного критерия Q, исходя из величины размаха варьирования R:

$$R = |x_1 - x_n|, (1.12)$$

$$Q_1 = \frac{|x_1 - x_2|}{R},\tag{1.13 a}$$

$$Q_n = \frac{|x_n - x_{n-1}|}{R}. (1.13 6)$$

Выборка признается неоднородной, если хотя бы одно из вычисленных значений Q превышает табличное значение Q (\overline{P} , n), найденное для доверительной вероятности \overline{P} (см. табл. I приложения). Варианты x_1 или x_n , для которых соответствующее значение Q > Q (\overline{P} , n), отбрасываются и для полученной выборки уменьшенного объема выполняют новый цикл вычислений по уравнениям (1.12) и (1.13) с целью проверки ее однородности. Полученная в конечном счете однородная выборка используется для вычисления x, s^2 , s и $s_{\overline{z}}$.

Примечание 1.3. При $|x_1-x_2| < |x_2-x_3|$ и $|x_n-x_{n-1}| < |x_{n-1}-x_{n-2}|$ уравнения (1.13 а) и (1.13 б) принимают соответственно вид:

$$Q_1 = \frac{|x_2 - x_3|}{R}$$
; $Q_n = \frac{|x_{n-1} - x_{n-2}|}{R}$.

 $\Pi pumep 1.2$. При проведении девяти (n=9) определений содержания общего азота в плазме крови крыс были получены следующие данные (в порядке возрастания):

Содержание		Номер опыта і								
общего азота	1	2	3	4	5	6	7	8	9	
<i>x</i> _i ,%	0,62	0,81	0,83	0,86	0,87	0,90	0,94	0,98	0,99	

По уравнениям (1.12) и (1.13 а) находим:

$$R = |x_1 - x_n| = |0,62 - 0,99| = 0,37;$$

$$Q_1 = \frac{|x_1 - x_2|}{R} = \frac{|0,62 - 0,81|}{0,37} = 0,51.$$

По табл. І приложения находим: