$$b_0 \frac{1}{\mu_{\mathsf{M}}} = \frac{I_C^N}{C},$$

где $\mu_{\rm M}$ — рассчитанный или измеренный массовый коэффициент ослабления матрицы M;

I_C^N – суммарная интенсивность;

C – концентрация определяемого элемента в образце.

Определение суммарной интенсивности элемента в образце. Интенсивность флуоресценции, например, K_{α} -линии элемента, $(N_{K\alpha})$ пропорциональна числу квантов, поглощенных K-уровнем, и выходу флуоресценции для K-серии.

Рассчитывают суммарную интенсивность излучения (I_C^N) определяемого элемента по измеренным интенсивностям флуоресцентной и фоновой линий, в предположении наличия в образце посторонних примесей.

Определение следовых количеств элемента. Для разбавленных растворов, если концентрация элемента находится в линейной части калибровочной кривой, методом рентгенофлуоресцентного анализа можно рассчитать концентрацию (C) по уравнению:

$$C = \frac{I_C^N}{b_0 \frac{1}{\mu_M}} \cdot f ,$$

где f — коэффициент разбавления.

Оборудование

Приборы рентгенофлуоресцентного анализа состоят из рентгеновского источника, держателя пробы и спектрометра. Спектрометр измеряет длину волны (λ) или энергию (E) и интенсивность флуоресцентного излучения, испускаемого пробой. В зависимости от параметра, непосредственно измеряемого спектрометром $(\lambda$ или E), различают приборы с волновой и энергетической дисперсией, устройство которых принципиально различно.

Рентгеновские источники, используемые для возбуждения атомов в пробе, как правило, не имеют принципиальных отличий в приборах с